Publications
[Extracted from DiVA,
the publication database at KTH.]
- Ravichandran, N.; Lansner, A.; Herman, P. (2021):
- Brain-Like Approaches to Unsupervised Learning of Hidden Representations - A Comparative Study.
- [Conference paper] 30th International Conference on Artificial Neural Networks (ICANN), SEP 14-17, 2021, ELECTR NETWORK; Artificial Neural Networks And Machine Learning, ICANN 2021, Pt V 162-173 [Details]
- Wang, D.; Xu, J.; Stathis, D.; Zhang, L.; Li, F.; Lansner, A.; Hemani, A.; Yang, Y.; Herman, P.; Zou, Z. (2021):
- Mapping the BCPNN Learning Rule to a Memristor Model.
- Frontiers in Neuroscience 15: [Details]
- Chrysanthidis, N.; Fiebig, F.; Lansner, A.; Herman, P. (2021):
- Semantization of episodic memory in a spiking cortical attractor network model.
- Journal of Computational Neuroscience 49: S86-S87 [Details]
- Xu, J.; Wang, D.; Li, F.; Zhang, L.; Stathis, D.; Yang, Y.; Jin, Y.; Lansner, A.; Hemani, A.; Zou, Z.; Zheng, L. (2021):
- A Memristor Model with Concise Window Function for Spiking Brain-Inspired Computation.
- [Conference paper] 3rd IEEE International Conference on Artificial Intelligence Circuits and Systems, AICAS 2021, Washington, DC, USA, June 6-9, 2021; 3rd IEEE International Conference on Artificial Intelligence Circuits and Systems, AICAS [Details]
- Podobas, A.; Svedin, M.; Chien, W.; Peng, I.; Ravichandran, N.; Herman, P.; Lansner, A.; Markidis, S. (2021):
- StreamBrain - An HPC Framework for Brain-like Neural Networks on CPUs, GPUs and FPGAs.
- [Conference paper] 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies, HEART 2021, 21 June 2021- 23 June 2021, Online, Germany.; ACM International Conference Proceeding Series [Details]
- Stathis, D.; Yang, Y.; Hemani, A.; Lansner, A. (2021):
- Approximate computation of post-synaptic spikes reduces bandwidth to synaptic storage in a model of cortex.
- [Conference paper] 2021 Design, Automation and Test in Europe Conference and Exhibition, DATE 2021, 1 February 2021 through 5 February 2021, Grenoble, France,; Proceedings -Design, Automation and Test in Europe, DATE 685-688 [Details]
- Fiebig, F.; Herman, P.; Lansner, A. (2020):
- An Indexing Theory for Working Memory Based on Fast Hebbian Plasticity.
- ENEURO 7: [Details]
- Villani, G.; Jafarian, M.; Lansner, A.; Johansson, K. (2020):
- Analysis of free recall dynamics of an abstract working memory model.
- [Conference paper] 2020 American Control Conference, ACC 2020; Denver; United States; 1 July 2020 through 3 July 2020; 2020 American Control Conference (ACC) 2562-2567 [Details]
- Yang, Y.; Stathis, D.; Jordao, R.; Hemani, A.; Lansner, A. (2020):
- Optimizing BCPNN Learning Rule for Memory Access.
- Frontiers in Neuroscience 14: [Details]
- Ravichandran, N.; Lansner, A.; Herman, P. (2020):
- Learning representations in Bayesian Confidence Propagation neural networks.
- [Conference paper] International Joint Conference on Neural Networks (IJCNN) held as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI), JUL 19-24, 2020, ELECTR NETWORK; 2020 International joint conference on neural networks (IJCNN) [Details]
- Liu, L.; Wang, D.; Wang, Y.; Lansner, A.; Hemani, A.; Yang, Y.; Hu, X.; Zou, Z.; Zheng, L. (2020):
- A FPGA-based Hardware Accelerator for Bayesian Confidence Propagation Neural Network.
- [Conference paper] 6th IEEE Nordic Circuits and Systems Conference, NORCAS 2020 Virtual, Oslo 27 October 2020 through 28 October 2020; 2020 IEEE Nordic Circuits and Systems Conference, NORCAS 2020 - Proceedings [Details]
- Stathis, D.; Sudarshan, C.; Yang, Y.; Jung, M.; Weis, C.; Hemani, A.; Lansner, A.; Wehn, N. (2020):
- eBrainII - a 3 kW Realtime Custom 3D DRAM Integrated ASIC Implementation of a Biologically Plausible Model of a Human Scale Cortex.
- Journal of Signal Processing Systems 92: 1323-1343 [Details]
- Martinez Mayorquin, R.; Kviman, O.; Lansner, A.; Herman, P. (2019):
- Sequence Disambiguation with Synaptic Traces in Associative Neural Networks.
- [Conference paper] Artificial Neural Networks and Machine Learning - ICANN 2019: Theoretical Neural Computation - 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17-19, 2019; 28th International Conference on Artificial Neural Networks, ICANN 2019 793-805 [Details]
- Chrysanthidis, N.; Fiebig, F.; Lansner, A. (2019):
- Introducing double bouquet cells into a modular cortical associative memory model.
- Journal of Computational Neuroscience 47: 223-230 [Details]
- Martinez Mayorquin, R.; Lansner, A.; Herman, P. (2019):
- Probabilistic associative learning suffices for learning the temporal structure of multiple sequences.
- PLOS ONE 14: [Details]
- Iatropoulos, G.; Herman, P.; Lansner, A.; Karlgren, J.; Larsson, M.; Olofsson, J. (2018):
- The language of smell - Connecting linguistic and psychophysical properties of odor descriptors.
- Cognition 178: 37-49 [Details]
- Ravichandran, N.; Yang, F.; Peters, C.; Lansner, A.; Herman, P. (2018):
- Pedestrian simulation as multi-objective reinforcement learning.
- [Conference paper] 18th ACM International Conference on Intelligent Virtual Agents, IVA 2018; Western Sydney University's new Parramatta City Campus, Sydney; Australia; 5 November 2018 through 8 November 2018; Proceedings of the 18th International Conference on Intelligent Virtual Agents, IVA 2018 307-312 [Details]
- Iatropoulos, G.; Olofsson, J.; Herman, P.; Lansner, A.; Larsson, M. (2017):
- Analysis of Statistics and Semantic Relations of Odor-Describing Words in Written Olfactory Versus Non- Olfactory Contexts.
- Chemical Senses 42: E34-E35 [Details]
- Fiebig, F.; Lansner, A. (2017):
- A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation.
- Journal of Neuroscience 37: 83-96 [Details]
- Ekeberg, Ö.; Fransén, E.; Hellgren Kotaleski, J.; Herman, P.; Kumar, A.; Lansner, A.; Lindeberg, T. (2016):
- Computational Brain Science at CST, CSC, KTH.
- Other [Details]
- Berthet, P.; Lindahl, M.; Tully, P.; Hellgren-Kotaleski, J.; Lansner, A. (2016):
- Functional Relevance of Different Basal Ganglia Pathways Investigated in a Spiking Model with Reward Dependent Plasticity.
- Frontiers in Neural Circuits 10: [Details]
- Benjaminsson, S.; Herman, P.; Lansner, A. (2016):
- Performance of a computational model of the mammalian olfactory system.
- Chapter in book [Details]
- Tully, P.; Lindén, H.; Hennig, M.; Lansner, A. (2016):
- Spike-Based Bayesian-Hebbian Learning of Temporal Sequences.
- PloS Computational Biology 12: [Details]
- Vogginger, B.; Schüffny, R.; Lansner, A.; Cederström, L.; Parzsch, J.; Höppner, S. (2015):
- Reducing the computational footprint for real-time BCPNN learning.
- Frontiers in Neuroengineering 9: [Details]
- Eriksson, J.; Vogel, E.; Lansner, A.; Bergstrom, F.; Nyberg, L. (2015):
- Neurocognitive Architecture of Working Memory.
- Neuron 88: 33-46 [Details]
- Fiebig, F.; Lansner, A. (2015):
- Memory Consolidation from Seconds to Weeks Through Autonomous Reinstatement Dynamics in a Three-Stage Neural Network Model.
- [Conference paper] ADVANCES IN COGNITIVE NEURODYNAMICS (IV) 47-53 [Details]
- Mazzoni, A.; Lindén, H.; Cuntz, H.; Lansner, A.; Panzeri, S.; Einevoll, G. (2015):
- Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models.
- PloS Computational Biology 11: [Details]
- Krishnamurthy, P.; Silberberg, G.; Lansner, A. (2015):
- Long-range recruitment of Martinotti cells causes surround suppression and promotes saliency in an attractor network model.
- Frontiers in Neural Circuits 9: [Details]
- Farahini, N.; Hemani, A.; Lansner, A.; Clermidy, F.; Svensson, C. (2014):
- A scalable custom simulation machine for the Bayesian Confidence Propagation Neural Network model of the brain.
- [Conference paper] 2014 19th Asia and South Pacific Design Automation Conference, ASP-DAC 2014; Suntec; Singapore; 20 January 2014 through 23 January 2014; 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC) 578-585 [Details]
- Tully, P.; Hennig, M.; Lansner, A. (2014):
- Synaptic and nonsynaptic plasticity approximating probabilistic inference.
- Frontiers in Synaptic Neuroscience 6: [Details]
- Marco, S.; Gutierrez-Galvez, A.; Lansner, A.; Martinez, D.; Rospars, J.; Beccherelli, R.; Perera, A.; Pearce, T.; Verschure, P.; Persaud, K. (2014):
- A biomimetic approach to machine olfaction, featuring a very large-scale chemical sensor array and embedded neuro-bio-inspired computation.
- Microsystem Technologies 20: 729-742 [Details]
- Kaplan, B.; Khoei, M.; Lansner, A.; Perrinet, L. (2014):
- Signature of an anticipatory response in area VI as modeled by a probabilistic model and a spiking neural network.
- [Conference paper] 2014 International Joint Conference on Neural Networks, IJCNN 2014, 6 July 2014 through 11 July 2014, Beijing, China; 2014 International Joint Conference on Neural Networks (IJCNN) 3205-3212 [Details]
- Lansner, A.; Hemani, A.; Farahini, N. (2014):
- Spiking brain models - Computation, memory and communication constraints for custom hardware implementation.
- [Conference paper] 2014 19th Asia and South Pacific Design Automation Conference, ASP-DAC 2014; Suntec; Singapore; 20 January 2014 through 23 January 2014; 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC) 556-562 [Details]
- Kaplan, B.; Khoei, M.; Lansner, A.; Perrinet, L. (2014):
- Signature of an anticipatory response in area V1 as modeled by a probabilistic model and a spiking neural network.
- [Conference paper] International Joint Conference on Neural Networks (IJCNN), JUL 06-11, 2014, Beijing, PEOPLES R CHINA; PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) 3205-3212 [Details]
- Kaplan, B.; Lansner, A. (2014):
- A spiking neural network model of self-organized pattern recognition in the early mammalian olfactory system.
- Frontiers in Neural Circuits 8: 5 [Details]
- Fiebig, F.; Lansner, A. (2014):
- Memory consolidation from seconds to weeks - a three-stage neural network model with autonomous reinstatement dynamics.
- Frontiers in Computational Neuroscience 8: 64 [Details]
- Petrovici, M.; Vogginger, B.; Mueller, P.; Breitwieser, O.; Lundqvist, M.; Muller, L.; Ehrlich, M.; Destexhe, A.; Lansner, A.; Schueffny, R.; Schemmel, J.; Meier, K. (2014):
- Characterization and Compensation of Network-Level Anomalies in Mixed-Signal Neuromorphic Modeling Platforms.
- PLOS ONE 9: e108590 [Details]
- Berthet, P.; Lansner, A. (2014):
- Optogenetic Stimulation in a Computational Model of the Basal Ganglia Biases Action Selection and Reward Prediction Error.
- PLOS ONE 9: e90578 [Details]
- Marco, S.; Gutiérrez-Gálvez, A.; Lansner, A.; Martinez, D.; Rospars, J.; Beccherelli, R.; Perera, A.; Pearce, T.; Vershure, P.; Persaud, K. (2013):
- Biologically inspired large scale chemical sensor arrays and embedded data processing.
- [Conference paper] Conference Smart Sensors, Actuators, and MEMS VI; Grenoble; France; 24 April 2013 through 26 April 2013; Smart Sensors, Actuators, And Mems VI 876303 [Details]
- Herman, P.; Lundqvist, M.; Lansner, A. (2013):
- Nested theta to gamma oscillations and precise spatiotemporal firing during memory retrieval in a simulated attractor network.
- Brain Research 1536: 68-87 [Details]
- Meli, C.; Lansner, A. (2013):
- A modular attractor associative memory with patchy connectivity and weight pruning.
- Report [Details]
- Tully, P.; Lindén, H.; Hennig, M.; Lansner, A. (2013):
- Probabilistic computation underlying sequence learning in a spiking attractor memory network.
- BMC neuroscience (Online) 14 (Suppl 1): [Details]
- Lundqvist, M.; Herman, P.; Palva, M.; Palva, S.; Silverstein, D.; Lansner, A. (2013):
- Stimulus detection rate and latency, firing rates and 1-40Hz oscillatory power are modulated by infra-slow fluctuations in a bistable attractor network model.
- NeuroImage 83: 458-471 [Details]
- Schain, M.; Benjaminsson, S.; Varnäs, K.; Forsberg, A.; Halldin, C.; Lansner, A.; Farde, L.; Varrone, A. (2013):
- Arterial input function derived from pairwise correlations between PET-image voxels.
- Journal of Cerebral Blood Flow and Metabolism 33: 1058-1065 [Details]
- Lundqvist, M.; Herman, P.; Lansner, A. (2013):
- Effect of Prestimulus Alpha Power, Phase, and Synchronization on Stimulus Detection Rates in a Biophysical Attractor Network Model.
- Journal of Neuroscience 33: 11817-11824 [Details]
- Meli, C.; Lansner, A. (2013):
- A modular attractor associative memory with patchy connectivity and weight pruning.
- Network 24: 129-150 [Details]
- Kaplan, B.; Anders, L.; Perrinet, L.; Masson, G. (2013):
- Anisotropic connectivity implements motion-basedprediction in a spiking neural network.
- Frontiers in Computational Neuroscience : [Details]
- Lansner, A.; Marklund, P.; Sikström, S.; Nilsson, L. (2013):
- Reactivation in Working Memory - An Attractor Network Model of Free Recall.
- PLOS ONE 8: e73776 [Details]
- Persaud, K.; Bernabei, M.; Benjaminsson, S.; Herman, P.; Lansner, A. (2012):
- Reverse Engineering of Nature in the field of Chemical Sensors.
- [Conference paper] 14th International Meeting on Chemical Sensors - IMCS 2012; [Details]
- Schain, M.; Benjaminsson, S.; Varnas, K.; Forsberg, A.; Halldin, C.; Lansner, A.; Farde, L.; Varrone, A. (2012):
- Image derived input function using a multivariate analysis method based on pair-wise correlation between PET-image voxels.
- Journal of Cerebral Blood Flow and Metabolism 32: S149-S151 [Details]
More